skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Joo, Yong Lak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The use of calcium bearing resources to facilitate solvent regeneration and CO2 reuse via carbon mineralization offers a low energy pathway for the production of calcium carbonate. However, a crucial challenge is the lack of specificity in the formation of various calcium carbonate polymorphs during carbon mineralization. One of the less explored but highly effective approaches to tune the morphology and crystal structure of specific carbonate phases involves tuning vortex flows. This approach is an alternative to utilizing chemical reagents that need to be regenerated for tuning the morphologies and crystalline structures to direct the formation of specific carbonate phases. In this study, the efficacy of using homogeneous vortex flows in limiting the agglomeration of carbonate particles and directing the formation of metastable vaterite phases is discussed and contrasted with the influence of inhomogeneous conventional feed flow patterns on precipitated calcium carbonate (PCC). Herein, a TaylorCouette Carbonate Conversion (TC3 ) reactor is used to direct the formation of spherical vaterite particles with uniform particle size distribution preferentially over calcite and other phases. The formed vortex patterns inside TC3 reactor provide homogeneous reaction spaces conducive to PCC formation, ensuring uniform mixing throughout the process. By increasing the rotational speed and the residence time, higher purity carbonates with more uniform sizes are obtained. Furthermore, preferential vaterite formation is also observed in leachates obtained from alkaline industrial residues such as construction and demolition waste and steel slag. Thus, the proposed approach is effective in harnessing multiple waste streams such as CO2 emissions and alkaline industrial residues to produce calcium carbonate phases such as vaterite with structural and morphological specificity. 
    more » « less
  2. Rechargeable metal–air batteries operated in ambient air fail as a result of complex anode surface reactions. Interphases composed of metallic In protect Li anodes, enabling Li–air batteries to operate in ambient air. 
    more » « less
  3. Abstract Liquid‐like nanoparticle organic hybrid materials (NOHMs) consisting of a silica core with ionically grafted branched polyethyleneimine chains (referred to as NIPEI) are encapsulated within submicron‐scale polyacrylonitrile (PAN)/polymer‐derived‐ceramic electrospun fibers. The addition of a room‐temperature curable, liquid‐phase organopolysilazane (OPSZ) ceramic precursor to the PAN/NOHM solution enhances the internal dispersion of NOHMs and forms a thin ceramic sheath layer on the fiber exterior, shielding the hydrophilic NIPEI to produce near‐superhydrophobic non‐woven fiber mats with contact angles exceeding 140°. 60:40 loadings of NOHMs to PAN/OPSZ can be reliably achieved with low OPSZ percentages required, and up to 4:1 NOHM:polymer loadings are possible before losing hydrophobicity. These fibers demonstrate up to ≈2 mmol CO2g−1fiber capture capacities in a pure CO2atmosphere through the nonwoven fibrous networks and the permeability of the OPSZ shell. The hybrid fibers additionally show enhanced capture kinetics under pure CO2and 400 ppm CO2conditions, indicating their promising application as a direct air capture platform. 
    more » « less
  4. Electrospray creates textured interphases to regulate anode morphology and cathode reaction kinetics in aqueous Zn flow batteries. 
    more » « less
  5. Abstract Aqueous zinc batteries are attracting interest because of their potential for cost-effective and safe electricity storage. However, metallic zinc exhibits only moderate reversibility in aqueous electrolytes. To circumvent this issue, we study aqueous Zn batteries able to form nanometric interphases at the Zn metal/liquid electrolyte interface, composed of an ion-oligomer complex. In Zn||Zn symmetric cell studies, we report highly reversible cycling at high current densities and capacities (e.g., 160 mA cm −2 ; 2.6 mAh cm −2 ). By means of quartz-crystal microbalance, nuclear magnetic resonance, and voltammetry measurements we show that the interphase film exists in a dynamic equilibrium with oligomers dissolved in the electrolyte. The interphase strategy is applied to aqueous Zn||I 2 and Zn||MnO 2 cells that are charged/discharged for 12,000 cycles and 1000 cycles, respectively, at a current density of 160 mA cm −2 and capacity of approximately 0.85 mAh cm −2 . Finally, we demonstrate that Zn||I 2 -carbon pouch cells (9 cm 2 area) cycle stably and deliver a specific energy of 151 Wh/kg (based on the total mass of active materials in the electrode) at a charge current density of 56 mA cm −2 . 
    more » « less